
AN EXTENSIBLE JAVA™ USER INTERFACE FRAMEWORK
FOR CONTROLLING DISTRIBUTED SYSTEMS

Glenn Eychaner

Interferometry Systems and Technology
Jet Propulsion Laboratory

4800 Oak Grove Drive, M/S 171-113
Pasadena, CA 91109-8099

Gl enn. Eychaner @j pl . nasa. gov

ABSTRACT

Graphical user interfaces (GUIs) are the preferred method
of interacting with a distributed system such as a spacecraft
ground system. While GUIs are often difficult to develop
and maintain, the capabilities of the Java language and
JavaBeans™ component architecture can be used to create
a generic framework that allows easy and rapid
development, deployment, and maintenance of user
interfaces to control a variety of distributed systems.

1. INTRODUCTION

To control a distributed system, a user typically interacts
with a GUI that sends commands to and displays telemetry
from the system. These GUIs are complex, yet are often
custom built for each new system to be controlled at
considerable expense. In creating GUIs for a set of
interferometer test beds, we are developing a Java
framework that all the systems can share. Dynamic class
loading, reflection, and other run-time capabilities of the
Java language and JavaBeans component architecture allow
the GUI for each system to be created with a minimum of
custom development. The framework imposes a minimal
set of requirements on the systems, yet allows them
considerable flexibility to extend its capabilities.

Using the framework, GUI components in control panels
and menus can send commands to a particular distributed
system with a minimum of system-specific code. The
framework receives, decodes, processes, and displays
telemetry data; custom telemetry data handling can be
added for a particular system. In addition, the framework
supports saving and later restoring user configurations of
control panels and telemetry displays with a minimum of
effort in the system-specific code.

While this framework is currently written in Java Swing
and used in a CORBA® (Common Object Request Broker
Architecture) environment, the techniques and overall

design of the framework can be easily adapted to other Java
GUI toolkits (such as AWT or SWT) and other distributed
system architectures. The framework is written entirely in
the Java language so that GUIs can be deployed to any
operating system with a Java Runtime Environment without
recompilation or code changes. The framework is fully
multi-threaded, with performance comparable to
applications written in platform-dependent languages.

This paper will describe the framework’s interaction with
the system-specific code as well as some of its internals,
and contains a number of Java code samples. For the sake
of brevity, these samples omit details of the actual
implementation (such as scope qualifiers of class and
method definitions). The code for the working system can
be made available on request.

2. COMMANDING A DISTRIBUTED SYSTEM

First, let us examine how the framework enables a user to
send commands to a distributed system. The framework
requires the system to expose its command interface as a set
of objects; connecting to these objects and calling their
methods executes the commands. This allows the
framework to leverage existing Java functionality for
dynamically creating, manipulating and introspecting
objects. If a distributed system uses a Java-compatible
object-oriented architecture, it will probably already exist as
a set of distributed objects, and the commands can be
executed by calling methods of the distributed objects
directly. In a CORBA-based system, for example, the
interfaces to the distributed objects are written in a
language-neutral Interface Definition Language (IDL).
Tools supplied with the CORBA ORB (Object Request
Broker) being used (an ORB is supplied with the Java
Runtime Environment) enable the framework to interact
with them as Java objects.

If an object-oriented architecture is not already being used,
exposing the system’s commands to the framework may

require the creation of adapter objects. The framework can
execute commands by calling methods of these adapter
objects that translate the commands to the format required
by the system. These adapter objects are generally simple,
and can often be generated automatically from templates
(just as the CORBA IDL compiler generates the Java code
for objects from the IDL files).

The system may expose its commands as the methods of
any number of objects. However, it is recommended that
the classes of these objects follow established object-
oriented development paradigms and patterns, with each
class containing a related set of commands for manipulating
a part of the distributed system. While the framework does
not permit method overloading, the classes may extend or
implement any other classes and their methods make take
any parameters and return any values desired.

Once a system’s commands are available as methods of
objects, we need to make those command objects visible to
the framework. For each class of command object, an
implementation of the abstract framework class
Commander must be created:

c l ass Commander {
 Cont r ol Set cr eat eCont r ol Set () ;
 St r i ng get Obj ect Locat i on() ;
 voi d set Obj ect Locat i on(St r i ng s) ;
 Obj ect connect () ;
 voi d di sconnect (Obj ect o) ;
 bool ean i sConnect ed() ;
}

The Commander class contains methods for setting the
location of, connecting to, and disconnecting from the
command object. The implementation of the connection
between the framework and the distributed system is
specific to a particular architecture and not particularly
interesting; the methods are implemented in the superclass
of the Commander classes for a particular system, which
may be provided as part of the framework (as it is for a
CORBA-based system).

3. DISPLAYING CONTROLS

Now we need to create the user interfaces for interacting
with the Commander objects. The user interface for a
Commander object is encapsulated in the Cont r ol Set
object returned by the cr eat eCont r ol Set () method:

c l ass Cont r ol Set {
 JComponent get Mai nCont r ol Panel () ;
 JMenu get CommandMenu() ;
}

A Cont r ol Set object contains a control panel and a
menu. The control panel can contain buttons that send
commands to the system, input components (text fields,

combo boxes, checkboxes, etc.) that set the parameters of
the methods, and output components (labels, text areas,
etc.) that display the return values of the commands. The
menu can likewise contain menu items that send commands
to the system, set input parameters, or display return values.
The control panel and menu can be created using any
desired tool, such as the drag-and-drop GUI editor included
in many Java development environments. The framework
displays the control panel in a window and adds the menu
to an existing menu bar (along with menu items to
reconnect to or disconnect from the command object) when
the Commander object is created.

The Cont r ol Set object is responsible for connecting the
GUI components to the methods of the command object
and their input parameters and return values. This is where
the real power of the framework lies; each GUI component
can be configured to call a method, set an input parameter
of a method, or display a method’s return value with only
one or two lines of code.

4. EXECUTING COMMANDS

To demonstrate the power of the framework, let us consider
a user interface for controlling a camera. The distributed
system contains an object with a t akePi ct ur e()
method, which will command the camera to take a picture.
The Cont r ol Set object returned by the camera’s
Commander object contains a control panel with a single
button and a menu with a single menu item:

c l ass Camer aCont r ol ext ends Cont r ol Set {
 JPanel our Panel = new JPanel () ;
 JMenu our Menu = new JMenu() ;

 Camer aCont r ol () {
 our Panel . add(new JBut t on()) ;
 our Menu. add(new JMenuI t em()) ;
 }

 JComponent get Mai nCont r ol Panel () {
 r et ur n our Panel ;
 }

 JMenu get CommandMenu() {
 r et ur n our Menu;
 }
}

To configure the button and menu item to call the
t akePi ct ur e() method of the camera, we call a method
of the Cont r ol Set object:

Execut eAct i on bi ndMet hod(St r i ng met hod) ;

The met hod argument is the name of the method of the
command object to be called, and the returned Act i on
object can be set as the action of the button or menu item.
(Java GUI components that perform an action, such as

buttons and menu items, typically have a
set Act i on(Act i on) method.) When the action of the
button or menu item is performed (i.e. the button is pressed
or the menu item is selected by the user), the method of the
command object will be called by the action. We can add
this to the Camer aCont r ol class’s constructor:

Camer aCont r ol () {
 Execut eAct i on a =
 bi ndMet hod(“ t akePi ct ur e”) ;
 our Panel . add(new JBut t on(a)) ;
 our Menu. add(new JMenuI t em(a)) ;
}

It seems simple because the real work is taking place in the
framework; in particular, inside the Execut eAct i on
object. To allow the Execut eAct i on object to access
the command object (the camera), the framework insures
that each object contains an internal reference to the object
that constructed it. Thus, the Execut eAct i on object has
an internal reference to the Camer aCont r ol object that
constructed it, which has a reference to the Commander
object that constructed it, which has a reference to the
command object (once it has been connected). By
delegating up the chain, the Execut eAct i on object can
access the command object. All this is handled internally,
and is not exposed to the system-specific code.

To call the method named in the bi ndMet hod() call, the
Execut eAct i on object first uses introspection on the
command object to search for a method with the requested
name. The resulting Met hod object is stored in the
Execut eAct i on object. (If no matching method is
found, the action is disabled and an error message is
output.) To avoid the overhead of finding the Met hod
object every time the action is performed, it is located once
when the Commander object is connected (or when the
Execut eAct i on object is created if the Commander
object is already connected).

When action is performed, the act i onPer f or med()
method of the Execut eAct i on object calls the
i nvoke() method of the Met hod object, executing the
method of the command object. This takes place in a
separate thread so as not to interfere with the operation of
the GUI. (Swing, like most GUI toolkits, uses a single
thread to handle user-generated events such as button
presses; if the i nvoke() method were called in this
thread, the GUI would become unresponsive until it
returned.) The distributed system thus receives and
executes the command.

5. INPUT PARAMETERS

Merely connecting a method of a command object to a
button or menu item is only sufficient if the method has no
parameters. If this is not the case, however, the framework

can connect other GUI components in the control panel to
the input parameters of the method. Suppose the
t akePi ct ur e() method has the exposure time as its
only input parameter:

voi d t akePi ct ur e(doubl e exposur e) ;

If a text field for inputting the exposure time is added to the
control panel, a method of the Execut eAct i on object
can configure the text field to set the input parameter:

voi d bi ndI nput (JText Fi el d t , i nt par am) ;

This sets input parameter number par am in the method’s
parameter list (the first parameter is number zero) from the
text in text field t each time the Execut eAct i on
object’s action is performed. This adds a few more lines to
the Camer aCont r ol class’s constructor:

Camer aCont r ol () {
 Execut eAct i on a =
 bi ndMet hod(“ t akePi ct ur e”) ;
 JText Fi el d t = new JText Fi el d() ;
 a. bi ndI nput (t , 0) ;
 our Panel . add(t) ;
 our Panel . add(new JBut t on(a)) ;
 our Menu. add(new JMenuI t em(a)) ;
}

Again, it seems simple because the real work is taking place
inside the framework. The bi ndI nput () method shown
above delegates internally to this more general method of
the Execut eAct i on object:

voi d bi ndI nput (JComponent c,
 St r i ng pr oper t y,
 i nt par am,
 For mat f or mat) ;

This sets the specified input parameter from any property of
any GUI component. (A property is the JavaBeans design
pattern for reading and writing an object’s internal state
through special getter and setter access methods.) In our
camera example, the first input parameter of the
t akePi ct ur e() method will be set from the “ text”
property of the text field (which contains the text typed into
the field).

When setting an input parameter of a method, the
framework automatically handles conversions between Java
primitive types or St r i ng objects. If the input parameter
is not one of these types (that is, it is any non-string object),
an optional For mat object can be supplied to the
bi ndI nput () method as shown above to convert the
value returned from the input component to an object of the
type required.

The framework also has a more powerful mechanism for
handling input parameters that are objects. Suppose the

t akePi ct ur e() method of our imaginary camera has a
single parameter of a class Pi ct ur ePar ams :

voi d t akePi ct ur e(Pi ct ur ePar ams p) ;

c l ass Pi ct ur ePar ams {
 doubl e exposur eTi me;
 doubl e f St op;
 bool ean compr ess;
}

We can use an alternate form of the bi ndI nput ()
method to cause any property of any input component to set
any field (or subfield) of any input parameter when the
action is performed:

voi d bi ndI nput (JComponent c,
 St r i ng pr oper t y,
 St r i ng f i el d) ;

The field is specified in standard Java notation, beginning
with an array index indicating the parameter number. Thus,
to cause our text field from the Camer aCont r ol
constructor above to set the exposur eTi me field of the
first (and only) input parameter of the t akePi ct ur e()
method, only a small change to our constructor is required:

a. bi ndI nput (t , “ [0] . exposur eTi me”) ;

The string designating the field is parsed and used to
recursively introspect the input parameter to find the
indicated field. The input parameter may contain objects or
arrays at any depth; the string “ [0] . a[1] . b” will bind
to field b of the second element of array field a of the first
input parameter. Intermediate objects and arrays are
constructed dynamically as necessary, and must have public
constructors that take no parameters (this is the default
constructor in Java if none is specified in a class).

The implementation of all this introspection is, of course,
much more complex than the description; the framework
code responsible is considerably longer than this paper.
However, this complexity is all hidden from the
implementers of the specific systems; they only need to
know how to use the bi ndI nput () methods, not how
they work internally.

Thus far, we have ignored the menu item in this discussion.
Since, as we have implemented it above, it is using the
same Execut eAct i on object as the button, it will have
the same behavior; it will set the t akePi ct ur e()
method’s input parameter from the text field in the control
panel and then call the method. However, suppose we
instead want it to prompt the user for the exposure time
with a dialog containing a text field. First, we will have to
configure the menu item with a separate Execut eAct i on
object, so that it can execute differently from the button.
Second, we will have to create a JOpt i onPane object

containing a text field for the dialog, and bind the new text
field in the same way as the previous one. Finally, we will
have to instruct the menu item’s Execut eAct i on object
to display the dialog before getting the input values from its
components using this method of the Execut eAct i on
object:

voi d set I nput Opt i onPane(JOpt i onPane p) ;

The framework will then automatically display the option
pane in a dialog when the action is performed, before
setting the input parameters. The constructor for the
Camer aCont r ol class now looks like this:

Camer aCont r ol () {
 Execut eAct i on a =
 bi ndMet hod(“ t akePi ct ur e”) ;
 JText Fi el d t = new JText Fi el d() ;
 a. bi ndI nput (t , 0) ;
 our Panel . add(t) ;
 our Panel . add(new JBut t on(a)) ;

 Execut eAct i on a2 =
 bi ndMet hod(“ t akePi ct ur e”) ;
 JText Fi el d t 2 = new JText Fi el d() ;
 a2. bi ndI nput (t 2, 0) ;
 JOpt i onPane p = new JOpt i onPane(t 2) ;
 a2. set I nput Opt i onPane(p) ;
 our Menu. add(new JMenuI t em(a2)) ;
}

We now have a control panel and menu that can command
our camera, and the finished code is not particularly
complicated. The framework is doing much of the work for
us, allowing GUIs to be deployed to many systems, even
those undergoing rapid development, easily and quickly.

6. RETURN VALUES

As one would expect, displaying the return values from the
command object’s methods is very similar to setting the
input parameters. The Execut eAct i on object contains
methods for setting a property of a GUI component from
the return value and setting a dialog to be displayed when
the method of the command object returns:

voi d bi ndOut put (JComponent c,
 St r i ng pr oper t y,
 For mat f or mat) ;
voi d set Out put Opt i onPane(JOpt i onPane p) ;

These work in a manner very similar to the methods for
setting the input parameters. When the method of the
command object returns, the return value is used to set the
indicated property of any connected GUI component, and if
an option pane has been set, it is displayed to the user as a
dialog. (The framework also transparently handles the
threading issues of the Swing threading model.)

7. ADDITIONAL CONTROL PANELS

It is sometimes useful for a command object’s controls to
be displayed in multiple control panels. For example, a set
of related, but seldom used, controls can then be displayed
in a second control panel apart from the main control panel,
and this control panel can be opened and closed as needed.
To support this, the Execut eAct i on object has a method
that creates an Act i on object to display an additional
control panel:

Act i on bi ndCont r ol Panel (JComponent pnl) ;

The action of a button or menu item can then be set to this
Act i on object. The framework will handle placing the
panel in a window and displaying it to the user when the
action is performed.

8. CREATING THE COMMANDER OBJECTS

We have seen how the Commander classes are defined,
how they create controls to be displayed to the user, and
how those controls send commands to the distributed
system. Now we have to answer the question of how the
Commander objects are created by the framework in the
first place. Fortunately, this is relatively simple, at least in
terms of the system-specific code. Unfortunately, it adds
some additional requirements to the distributed system.

In the current operation of the framework, the distributed
system is required to provide a list of all the locations of
objects available to be commanded. The GUI is configured
at startup (in a system property, an initialization file, or the
command line) with the location of this list. For example,
in the current CORBA framework, all the available objects
are entries in a Naming Service. The GUI is given the
location of the Naming Service; the objects there can be
easily listed. The GUI is also configured with a list of all
the available implementations of the Commander class
(the actual implementation class names). Finally, each
implementation of the Commander class must have a
public constructor that takes no arguments.

To connect to an object, the user selects a location and a
corresponding Commander implementation from a dialog.
Once a location and Commander implementation have
been selected, a factory object in the framework
dynamically loads the selected Commander class by name
and constructs a new instance of the class. The factory then
passes the location to the set Obj ect Locat i on()
method of the Commander , and connects the Commander
to the object by calling the connect () method.

The user could be spared from having to select the
Commander implementation by having the framework
connect to the object to be commanded and discover its

type before creating the appropriate Commander object.
However, this would make changing the implementation for
connecting to the command objects more difficult, and also
make commanding heterogeneous systems considerably
more complicated. Requiring the user to select the
Commander implementation has not been an issue in the
GUIs deployed so far.

The framework then displays the main control panel and
menu for the connected object, and the user can interact
with it. Once the user has all the desired control panels
open, the state of the entire GUI can be saved to a file. This
state can be restored the next time the GUI is started by
specifying the file name on the command line; the GUI will
then reconnect to all the objects and redisplay all the control
panels exactly as they were before. This greatly increases
the ease of use of the GUI by allowing individual
customization of the control panel layout.

9. PERSISTENCE

Implementations of the Commander class need not contain
any code to support saving and restoring the GUI’s state;
the persistence of the GUI is handled entirely within the
framework. A careful examination of the framework
reveals how this is accomplished. First, the connections to
the distributed system can be saved and restored by saving
the locations the user has connected and the name of the
Commander implementation each location is using.
Second, the Commander implementations only provide the
contents of the control panel windows and menus. The
windows and menus themselves are created and displayed
by the framework and managed internally, so that their size,
position, and other state can be saved and restored entirely
within the framework. Finally, the framework tracks the
bindings of the control panel components made by the
implementation. Since these bindings encompass all the
relevant properties of the control panels that can be changed
by the user, and the bindings give easy access to the
properties, saving and restoring them can be handled
entirely within the framework.

10. TELEMETRY DISPLAYS

In addition to enabling the user to send commands to the
system, the GUI must also display telemetry from the
system. While the current telemetry framework has some
flexibility, it is not as advanced as the command framework
previously described and requires more system-specific
code and effort. However, it still contains a number of
useful abstractions that I will briefly describe.

Just as the implementations of the Commander class can
be specified as part of the configuration of the GUI at
startup, so can the telemetry display classes be specified. In
the simplest design, each telemetry display class must

extend the JComponent class so that it can be displayed
as the contents of a frame, have a constructor that takes no
arguments, and implement an interface that allows it to
receive telemetry data:

i nt er f ace Recei ver {
 voi d handl eDat a (Val ueEvent e) ;
 St r i ng get Name() ;
}

The display object can manipulate the data internally in any
way it sees fit and display it to the user. If the display
object is not capable of displaying the telemetry it is
receiving (for example, it does not know how to handle the
data type, such as an image sent to a text display), it should
display a useful error message to the user. The framework
itself contains common display classes, such as an image
viewer, a strip chart, and a table for displaying text or
numeric data in rows and columns.

In actual practice, the problem is more complicated. For
example, some telemetry displays might be able to display
multiple channels simultaneously (such as a strip chart)
while others can only display a single channel in a useful
manner (such as an image display). Also, some telemetry
displays often have internal state that is not immediately
visible to the framework, but can adjusted by the user and
must be persisted along with the rest of the user interface.
For example, a strip chart should allow the user to adjust
the bounds of the axes and the colors of the individual
traces. The current framework requires telemetry displays
to implement an extensive interface, but provides a number
of helper classes to which system-specific displays can
delegate the implementation of the interface. We are
currently working on a more general solution.

11. TELEMETRY DATA

To receive telemetry, the framework requires some
standardization of the data. It expects that the telemetry
data will be sent from the system as one or more data
streams, and requires that the telemetry from each element
of the system can be uniquely identified. The stream of
data being sent from an individual element of the system is
referred to as a telemetry channel. The framework requires
the data to be sent in packets; each packet must include a
description of the type of data contained within it as well as
the data itself.

For example, in the current CORBA implementation, the
telemetry is sent using asynchronous CORBA Event
Channels. The GUI requests data from a particular channel
by creating a PushConsumer object that connects itself to
the event channel. As the distributed system produces data,
the push(Any) method of the PushConsumer object
will be called by the distributed system to send the data to

the GUI. The data arrives as CORBA Any objects, which
automatically contain both the data they were created to
hold and a TypeCode object describing the contents of the
Any object.

A different telemetry system, such as telemetry sent directly
over a network socket, would require a different
Consumer implementation in the same way that a
different command system requires a different connection
implementation in the Commander superclass. The
Consumer implementation for a network socket might
need to filter the data if multiple system elements (i.e.
multiple channels) send data over the same socket. The
framework around the Consumer and Commander
objects that handles their creation, destruction, and
persistence remains the same, however.

The Consumer objects also act as local multiplexers for
the telemetry data to minimize the load on the distributed
system. Only one Consumer object is created for each
channel. If more than one telemetry display is subscribed
to the same channel (the displays might be of different
types, such as a text display and a graph), they are both
connected to the same Consumer object by the
framework.

Just as it must make a list of command locations available
to the framework, the system must also make a list of
telemetry channels available, and the GUI is configured
with the location of this list at startup. (In the CORBA
implementation, the system includes an object in the
Naming Service that can be queried for this list.) The user
selects a channel from the list and a display type. The
framework then creates the display object of that type (in
exactly the same way a Commander is created), displays it
in an internally managed frame, and connects it to the
Consumer for the channel.

12. UNPACKING TELEMETRY

In discussing the telemetry displays, we specified that they
would receive telemetry data as Val ueEvent objects
without discussing how they are created from the incoming
packets. In fact, the Val ueEvent objects are just
convenient wrappers created around the data packets. The
Consumer object creates a value event for each data
packet received and passes it to the displays. The
Val ueEvent object has a get Dat a() method that
unpacks the data in the packet, caches it internally, and
returns it. Since Consumer objects send the same
Val ueEvent object to all the displays subscribed to a
channel for each packet received, this insures that a given
packet is only unpacked at most once, and is not unpacked
at all if it is not displayed, maximizing the performance of
the GUI.

The actual work of unpacking the telemetry packet is done
by a set of factories; the classes of these factories, as might
be expected, are supplied to the GUI in its configuration at
startup, and each factory class must have a no-argument
constructor. Each must also implement an interface that
allows the framework to find out what types of packets it
can unpack and to perform the unpacking:

i nt er f ace Tel emet r yFact or y {
 bool ean canCr eat eVal ue(Obj ect t ype) ;
 Val ue cr eat eVal ue(Obj ect dat a) ;
}

The parameters for the factory methods must be as general
as possible, and therefore are of class Obj ect . The
Val ueEvent objects are created with a reference to the
array of available factory objects by the framework, and can
then delegate the unpacking of the data packet to the
appropriate factory.

Scanning the factories for each data packet to be unpacked
introduces extra overhead in the telemetry system.
However, the canCr eat eVal ue() methods of the
factories will be simple enough that this overhead will be
minimal. Scanning the factories allows the telemetry
framework not to need to know what type of data is going
to be sent on a channel until data actually starts arriving.
Scanning also allows a channel to carry more than one type
of data, which is useful for sending errors without using a
second channel or having special “out-of-bounds” values.

The factories return the unpacked telemetry as Val ue
objects. These objects encapsulate the data and provide
convenience methods that allow the telemetry displays to
access the unpacked data in commonly desired forms:

i nt er f ace Val ue {
 Ar r ayVal ue asAr r ayVal ue() ;
 doubl e doubl eVal ue() ;
 Obj ect get Val ue() ;
 Number numer i cVal ue() ;
 St r i ng st r i ngVal ue() ;
 St r i ng t oSt r i ng(For mat [] f or mat s) ;
}

i nt er f ace Ar r ayVal ue ext ends Val ue {
 Obj ect get Val ue(i nt i ndex) ;
 Val ue val ue(i nt i ndex) ;
 Val ue[] val ues() ;
 Number numer i cVal ue (i nt i ndex) ;
 Number [] numer i cVal ues() ;
 doubl e doubl eVal ue(i nt i ndex) ;
 doubl e[] doubl eVal ues() ;
 i nt l engt h() ;
}

To add support for a custom telemetry data type,
implementations of the Val ue interfaces that encapsulate
the raw data and a factory that can unpack the data from a

packet must be created. The framework provides
implementations for numeric values and arrays, strings,
images, and other common data types, as well as factories
to unpack them from CORBA Any packets.

13. CONCLUDING REMARKS

Dynamic class loading, reflection, and other run-time
capabilities of the Java language and JavaBeans component
architecture can be used to create a framework that allows
rapid development, wide deployment, and easy
maintenance of system-specific user interfaces, allowing
the developer to focus on the distributed system rather than
the user interface. In particular, determining the class of a
few key objects in the framework at run-time allows the
framework to be easily modified to work with a wide
variety of distributed systems. The requirements imposed
on the systems by the framework need not be very
extensive, and various adapter strategies can be used to
assist in meeting these requirements. Though the relative
simplicity of the system-specific code comes at the price of
complexity in the shared framework, the powerful
capabilities of the Java language to create a generic,
adaptable framework reduce the effort necessary to build
and maintain the framework considerably.

NOTICES

Java and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States
and/or other countries. CORBA is a registered trademark of
Object Management Group, Inc. in the United States and/or
other countries.

